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ABSTRACT 
We present methods for anticipatory behavior in simulated 
graphical creatures. We discuss in general terms the importance of 
anticipatory behavior through explicit expectation formation. We 
present an in-depth description of a specific type of expectation-
formation, namely location-expectation, or object persistence. A 
new representation � the Probabilistic Occupancy Map (POM) � 
is presented, and it is shown how this representation can be used 
to maintain estimations of the positions of mobile objects in the 
world based on both positive and negative knowledge provided by 
the creature�s perceptual system. Finally a number of illustrative 
results are presented that show Duncan, our simulated dog, 
successfully performing a number of tasks that require a high 
degree of spatial common sense. 

Categories and Subject Descriptors 
I.2.0 [Artificial Intelligence]: General � cognitive simulation 

General Terms 
Algorithms, Design, Theory. 

Keywords 
Autonomous agents, graphical agents, object persistence, spatial 
common sense. 

1. INTRODUCTION 
As we attempt to build increasingly sophisticated autonomous 
interactive agents (or �synthetic creatures� as we will call them in 
this paper) an important contributor to a life-like appearance is the 
ability to anticipate. Anticipation � or expectation formation � 
can be thought of as the ability to make decisions and react to 
aspects of the world state that, for one reason or another, cannot 
be directly perceived. This might include events that occur outside 
the field of view, are occluded, or that have not yet happened (but 
are expected to happen). There are many potential sources for 

these expectations, such as reliably observed event correlations 
(when the button is pushed, the elevator doors are expected to 
open), theory of mind (given an assumed state of mind, another 
creature is expected to perform action A), physical intuition (when 
a ball is released, it is expected to fall), or, as will be discussed at 
length here, spatial structure (if a ball rolls behind a wall, it is 
expected to come out again after a certain delay). Not only do 
these types of expectations make a creature seem more intelligent, 
but their absence significantly impairs any pretensions it might 
have to common sense. If the ball disappears behind a wall, it 
would appear either broken or colossally stupid for the creature to 
then not know where to look for it. 

This work presents a model of object persistence, a cognitive 
phenomenon which we consider equivalent to the ability to form 
and maintain expectations of object positions over space. While 
not a general solution to the problem of expectation-formation, it 
does show an effective solution in a particular domain, a solution 
which is, moreover, firmly grounded in expectation theory. It also 
shows a reference implementation of an  object persistence system 
in Duncan, the Virtual Terrier (Figure 1). Duncan lives in a 
simple graphical environment that he perceives through a 
synthetic perception system that includes simulated audition and 
point-of-view rendering (synthetic vision). He is a platform for 
various aspects of our research, including operant and classical 
conditioning and motor learning. 

Section 2 is a brief discussion of expectation theory in general. 
Section 3 discusses in depth the problem of location-expectation. 
Section 4 introduces Probabilistic Occupancy Maps (POMs) as a 
means of maintaining location-expectation distributions. Section 5 
presents some example results and concluding remarks are given 
in Section 6. 

 
Figure 1: Duncan the Highland Terrier 
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2. EXPECTATION THEORY 
Kline�s Masters Thesis ([8]) provides an excellent overview of 
expectation theory. This discussion will largely parallel its 
conclusions. These concepts will be explored more concretely in 
the next section. 

An expectation, for our purposes, is a guess about some aspect of 
the world state that is not directly perceivable. Each expectation is 
accompanied by a degree of confidence, which indicates how 
strongly the expectation is believed to be accurate. In general, it is 
an observation of some sort � perhaps of an unusually salient 
stimulus � that leads to an expectation formation by a specialized 
predictor unit. While a creature might act on its expectations as if 
they were all completely accurate, the ultimate validity of an 
expectation is ascertained through verification. The process of 
verification can have three possible outcomes: 

•  Verifiably true: The expectation turned out to be correct. 

•  Verifiably false: The expectation turned out to be incorrect. 
This is an expectation violation. 

•  Unverifiable: The accuracy of the prediction could not  be 
determined. 

Typically, a verifiable prediction-outcome is followed by some 
form of belief revision. The predictor that generated the 
expectation might also be revised, for example, its reliability 
rating might be modified according to whether its outcome proved 
accurate or not. If the prediction accuracy was unverifiable then 
neither the expectation nor the predictor itself is impacted. This 
entire process is summarized in Figure 2. 

The above formulation applies to discrete true/false predictions. 
Some expectations, however, are better formulated as a space of 
predictions that might naturally be expressed as a probability 
distribution over the possible world states, as in Figure 3. Within 
this space, each infinitesimal element can be considered an 
individual prediction to be verified as true or false. These 
individual predictions can affect each other in two ways: first, in 
that an observation and confirmation of one prediction is 
equivalent to a negation of all the other predictions, resulting in a 
�tightening� of the distribution around the observed value (Figure 
3b). Second, a verified negation of a sub-region of the state-space 
(effectively a culling of probability from the distribution) results 
in a renormalization of the rest of the distribution (Figure 3c). 

2.1 Expectation Violations and Salience 
We define salience as the degree to which an observation violates 
expectation. As [8] points out there are two types of expectation 
violation: unexpected observations and negated expectations 
(verified false predictions). For the first kind, a straightforward 
inverse relationship exists between salience and confidence at the 
observed value (thus unexpected observations are more salient): 
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This maps salience into the range [0,∞] (assuming that c(x) has 
range [0,1]). We call this form of salience surprise. 

For expectation violations of the second kind, the salience can be 
considered proportional to the amount of confidence culled by the 
observation. This might be expressed as  
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where R is the region of the state-space of x that has been verified 
as false (see Figure 3c). We call this form of salience confusion. 
It is notable that many secondary emotions imply some form of 
expectation: fear, delight, disappointment, anticipation, confusion, 
dread, worry, etc. They also imply an extended range of possible 
interactions. Creatures that can form expectations can be tricked, 
teased, deceived and more. 

3. OBJECT PERSISTENCE 
In this section we introduce an extended example of expectation-
formation: that of location-expectation.  We argue that the ability 
to maintain reasonable location-expectations is tantamount to a 
sense of object persistence. Object persistence, as discussed by the 
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Figure 3: Incorporating positive and negative observations. 
A distribution (a) represents a space of predictions with the 
indicated confidence. An observation of the true state (b) 
results in a tightening of the distribution while the negation of 
some region of the state space (c) zeroes the distribution in that 
region, and scales the rest of the distribution up as appropriate. 



psychologist Piaget [13], refers to the persistence of mental 
images of objects after they have stopped being perceived. It also 
implies the ability to make basic deductions about where objects 
could be, and to act on those deductions. If a child turns toward a 
toy that has been hidden from it, it does not forget about the toy, 
or remain staring at the toy�s last known position. Instead it 
searches for the toy systematically, based on its last observed 
position and based on the physical structure of the environment � 
could it have been hidden behind the box, or under the table? The 
basic problem of object persistence, which we would like our 
synthetic creatures to be able to solve, is: given that an object is 
not currently visible, where is it expected to be? 

3.1 Distribution Representation 
We must come up with some way of representing our spatial 
probability distributions. One natural representation might be the 
gaussian distribution � after all, it is compact, and mathematically 
convenient, with notions of confidence and �best guess� built in. 
The difficulty with the straight gaussian representation is that it 

does not lend itself easily to the incorporation of negative 
knowledge. Figure 4 shows an example of this problem. Figure 
4a, shows the distribution for an occluded object. A great deal of 
negative information � namely, those locations observed to be 
empty � is being thrown out. The correct distribution, the one in 
which all probability has been zeroed in all visibly empty space, is 
shown in Figure 4b. This distribution is clearly not gaussian � it is 
even disjoint. Since the shape of the distribution relies ultimately 
on the physical structure of the environment, it can be arbitrarily 
complex � and arbitrarily messy. 

3.2 Probabilistic Occupancy Maps 
The general strategy we use to overcome the difficulties of the 
gaussian representation is to discretize the location-distribution, in 
what we call a Probabilistic Occupancy Map (POM). In this 
formulation the environment is partitioned into discrete locations 
which can be used as �buckets� of probability. Thus the compact 
gaussian representation is replaced with a vector of discrete 
activations, each corresponding to the probability that the target 
object is contained in that location. As Figure 4c shows, this 
scheme has no problem representing oddly-shaped distributions, 
though its accuracy obviously depends on the resolution of the 
map itself. 

We use a hexagonal grid overlaid on the environment. Each grid 
node is connected to six neighbors, and is denoted by a pair of 
(i,j) indices. Each node is annotated with a probability vector, 
whose element indicate the probability that the node contains a 
particular object. For simplicity, in the following discussion we 
will assume that there is one target object, and that each node is 
annotated with a single probability, p(ni,j), of containing that 
object. 

In some experiments the maps themselves were learned, such that 
higher resolution was used in more �interesting� parts of the 
environment, such as around prominent landmarks. This strategy 
is very useful in terms of representational economy. However, it is 
not essential to the basic implementation, and so will not be 
discussed here. See [6] for details. 

3.2.1 Probability Diffusion 
On timesteps in which the target object is not observed, a discrete 
diffusion step is carried out to reflect the decreased confidence in 
the target�s location. Simple isotropic diffusion works well. The 
update expression for a single node can be given as 
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where λ  is a diffusion constant in the range [0,1] and ( )tp n  is 
the probability of the node n at time t. Thus at each timestep, each 
node passes some fraction of its own activation to its neighbors.  

In cases where the target was last observed in motion, the 
probability should diffuse preferentially in the direction of the 
target�s last observed velocity. This can be used in the example in 
which the target object disappears behind an occluder � the 
creature can form an expectation about when it should reappear. 
The most obvious way to achieve this effect is to modify the 
diffusion rates along the various connections emanating from a 
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Figure 4: Distribution Representation 
A gaussian distribution (a) cannot incorporate negative 
information about regions of space observed to be empty (b). 
In this work, we discretize the space itself, and allow each 
element to become a �bucket� of probability (c). 



particular node so as to favor diffusion in the correct direction. 
We might set the diffusion rate, λ i, along the ith connection as 
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where v is the velocity vector and li is the position offset between 
the current node and the node�s ith neighbor. λc is a constant 
diffusion rate, ensuring that some probability is diffused to every 
neighbor, even if that neighbor does not lie in the direction of the 
velocity vector. Note that this method does not guarantee that the 
peak probability will follow exactly the straight linear 
extrapolation of the target�s position and velocity, although the 
result generally approximates it.  

3.2.2 Observation 
On timesteps in which the target object was observed, we pick the 
node n* that is closest to the target�s position. We tighten the 
distribution around this node by setting its probability to 1, and 
zeroing the probabilities of all other nodes:  
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As in section 2.1, we determine a salience for the observation with 
the expression 
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While this gives a valid mapping for a salience in the range [0,∞], 
it has one undesirable property: that when the distribution is very 
diffuse, even the most likely location (the location with the 
highest p*) returns a high salience if confirmed. Since the desired 
behavior should be for the most expected prediction not to be 
considered salient when confirmed, we normalize the previous 
expression by phighest, the probability of the most likely location. 
Thus, 
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3.2.3 Verification 
Positive verification in this domain is simply the observation of 
the target where it was expected to be. Negative verification is 
more complicated, requiring us to use information about locations 
observed to be empty. If a map node with a certain probability is 
considered a prediction about an object�s location, then the 
observation of that location without the corresponding 
observation of the object can be considered a negation of that 
prediction. If a location is confirmed to be empty, that information 
can be incorporated into the POM by zeroing the probability 
content of the corresponding map node. 

On timesteps in which the target object was not observed, the map 
nodes are divided into a visible set, V, and a non-visible set, N. A 
total amount of culled probability pculled is calculated as  
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Then the probabilities of all visible nodes are set to zero:  

 0, ( )n V p n ←∀ ∈  (1.10) 

Finally the remaining probabilities are renormalized 
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Note that by the definition given by equation (1.2), the value 
pculled is also the measure of the surprisingness of the failure to 
observe the target object. 

4. IMPLEMENTATION 
The POM scheme was implemented on top of C4, a character 
simulation platform described in [2] and [7]. Currently, Duncan 
(Figure 1) is our most sophisticated character, and it was in his 
brain that most of the following was implemented and tested. 

4.1 Synthetic Vision 
A simple model of synthetic vision was used as the primary 
source of perceptual information for Duncan, in a manner similar 
to schemes used in [1] and [18]. The vision model consisted of a 
rendering of the world from the point of view of Duncan�s left 
eye. This rendering was color-coded (as shown in Figure 5) such 
that individual objects were recognized by color (i.e. no shape-
analysis was performed). From these renderings, screen-space 
object-centroids were extracted, and combined with the contents 
of the depth-buffer to produce eye- and then world-space 
coordinates. Two implications of this strategy are that an object is 
considered visible if any portion of that object is visible, and that 
the location is taken as the centroid of the visible portion. 

4.1.1 The Test-point Method 
Another crucial function of the vision system is to determine the 
visibility of map-locations for the purposes of negative 
verification (i.e. in separating the N and V sets, from section 
3.2.3). A number of schemes are possible here, the �truest� one 
probably involving pixel-sampling over the expected screen-space 
extent of the node. This scheme is not used due to run-time 
considerations.  

Instead, we use a vastly simplified Test-Point approximation, in 
which a single point is imagined floating half a body-height above 
the world location of the map-node to be tested. The world-
coordinates of this point are transformed back into NDC 
coordinates. The depth-buffer is then queried to see whether an 

 
Figure 5: Duncan’s Synthetic Vision 



object at that point would be visible. If the depth of the pixel to 
which the test-point transformed  is less then the NDC-depth of 
the test-point, then the test-point is hidden, and the entire location 
is considered non-visible (and placed in the N set). If the depth is 
greater, then the location is considered visible (and placed in the 
V set). 

Unlike object-observation, in which the view of any part of the 
object counts as a full observation, it is generally advantageous in 
location-visibility to err on the side of non-visibility. In other 
words, it is advantageous to demand that the entire location be 
visible before the corresponding node is considered visible. This 
is simply to ensure that the true location of the object is never 
discounted simply because part of the location was visible. Note, 
however, that our test-point method does not follow this 
guideline. 

4.2 Working Memory and Object Matching 
Duncan maintains a Working Memory model that consists of a 
recent perceptual history of all objects in the world. On each 
timestep, the perceptual input from each object � color, shape and 
location � from the vision system is bundled up into a belief 
object. These beliefs are compared to a list of persistent beliefs 
stored in the creature�s Working Memory. Since many of the new 
beliefs probably represent a new observation of an old belief (if it 
represents the newest data from an object that has been tracked 
over multiple timesteps, for example), all incoming beliefs 
undergo a process of belief matching, in which the �distances� 
between the new belief and each of the old ones is found. If the 
lowest of these �distances� is below a threshold, the two are 
considered a match, and the data contained in the new belief is 
added onto the perceptual history contained in the old one. If the 
lowest distance is above the threshold, then the new belief is 
considered to represent a new object, and is itself added to 
Working Memory. 
In finding the distance between two perception tuples (each 
consisting of <color, shape, location>), each component in one 
tuple is compared with the corresponding component of the other. 
The total distance is then considered the sum of the component-
distances. For the purpose of this system, both shape and color are 
symbolic binary matches returning distance infinity or zero 
depending on whether there is an exact symbolic match or not 
(e.g. �red� = �red�). In comparing location however, we can again 
make use of the location distributions of the POM, since 
ultimately we are more interested in the likelihood of the target 
appearing at the new location than its straight distance from the 
last one (although straight distance is often used as a convenient 
approximation). This likelihood is exactly what the POM gives us. 
When a new observation is made, the incoming location data can 
be ascribed a nearest node, n*. This node holds some probability, 
p(n*) of containing the target object. To find the �distance� 
between a location-distribution, and a new observation at n*, we 
use  
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where highestp  is again the highest probability value of any node in 

the map. This is, of course, simply a re-casting of the salience 

function of equation (1.8). This follows the intuition that if an 
observation is too unexpected, we might reject it altogether. 
When a new belief is merged into the old one, the appropriate 
distribution tightening, as per equations (1.5) and (1.6) occurs. 
For all non-visible objects, the appropriate distribution culling is 
carried out, as in equation (1.10), followed by the diffusion of all 
location-distributions, as in equation (1.3). 

4.3 Action Selection and Motor Control 
Having updated his perceptual image of the world, Duncan must 
decide what to do. Though the problem of Action Selection is a 
major focus of our research (particularly with regards to learning), 
it is largely irrelevant to this work. In many of the experiments 
conducted on this system, Duncan was given just three behaviors: 
�look at target�, �approach target� and �approach shepherd� (the 
shepherd being a user-controlled character inhabiting the same 
space). Duncan decided between these behaviors deterministically 
at the instruction of the shepherd. These high-level behaviors are 
translated by the action selection system into low-level navigation 
and motor commands. A Navigation System was use to control 
locomotion toward a goal and obstacle avoidance, and a Motor 
System was used as the lowest-level interface with the graphics 
system to control Duncan�s animation. 

5. RESULTS 
This section presents a few scenarios as examples of Duncan�s 
new spatial capabilities with the POM system in place. 

5.1 Salient Moving Objects 
One result of the POM system is that moving objects �especially 
irregularly moving objects � automatically become salient. If an 
object remains still, its distribution looks like a roughly gaussian 
cluster of probability centered on the observed location of the 
object. When the object starts moving, the object is matched into 
a relatively unlikely part of this distribution � thereby making that 
observation salient. When velocity-based (anisotropic) diffusion is 
used, an object that zigzags is more salient than an object that 
moves at a constant speed in a constant direction. 

5.2 Search Behaviors 
There are a number of examples of �emergent search� that fall out 
of the POM system almost for free. 

5.2.1 Emergent Look-Around 
Intelligently moving the eyes over a visual scene, from an 
animation point of view, can be important in maintaining the 
illusion of life [16]. However, there is no practical point to this if 
the negative information about empty space is not used. Typically, 
the �look-around� behavior is a canned animation. However, a 
convincing �look-around� happens naturally with the POM 
system. Consider a situation in which a target (in this case, a 
sheep) has not been seen in some time (and has been moved since 
it was last observed), and is represented by a wide, diffuse 
distribution. When instructed to look at the sheep, Duncan turns 
towards the most likely position for the sheep, namely the center 
of the distribution. Not finding it there, he looks first one way, 
then the other, always looking at the current most likely position. 
The result is an alternating sweep-left, sweep-right behavior, until 
the sheep is found at its new location. 



5.2.2 Emergent Search 
If Duncan is instructed to approach the sheep, rather than just 
look at it, then the emergent look-around becomes an emergent 
search. As in the emergent look-around, Duncan approaches at 
every point the most likely location for the target object. He is 
preceded by his gaze however, which rules out open areas of the 
environment. This leaves only areas occluded by barriers, and the 
resulting behavior is what looks like a systematic search of these 
occluded areas. 
In one example, Duncan is introduced to the environment shown 
in Figure 6. After a brief view of the environment and the objects 
in it, Duncan is called to the shepherd. Behind his back, the sheep 
is moved behind the nearest wall. When told to approach the 
sheep, Duncan immediately goes to search behind the correct 
wall. Duncan is called away again, and this time the sheep is 
moved from its original hiding place to a new one behind the 
other wall. When again instructed to approach the sheep, Duncan 
first looks in the original hiding place. Not finding it there, he 
comes out and again scans the scene, this time concluding that the 
only place the sheep can now be is behind the second wall. Again, 
he finds the sheep in its hiding place. 
What is perhaps most interesting about this example, is that at a 
behavioral level � at the level of the Action Selection mechanism 
� Duncan has only two behaviors to chose from: �approach the 
sheep� and �approach the shepherd�. However, the result is much 
more sophisticated, and has the appearance of deliberative 
reasoning. 
This �emergent search� behavior is extremely important for 
keeping the process of action-selection clean. If �search� needed 
to be included at this level of the system, it would need to be 
listed explicitly as a strategy for �approaching the sheep,� 
�approaching the shepherd,� �biting the sheep�, �eating the 
sheep� etc. Matters would be even worse if we expected learning 
to occur at this level of control � thus pushing onto the learning 
mechanism the burden of deciding when �biting the sheep� 
necessitates a �search.� With the architecture described here � in 
which some of the decision-making has been pushed up into the 
perceptual/memory system and down into the navigation/motor 
system � some degree of search capability is implied in all 
targeted behaviors. 

5.3 Distribution-Based Object-Matching 
To show the advantage of distribution-based object-matching, a 
scenario was set up as shown in Figure 7. Like in a previous 
example, Duncan tracks a moving sheep as it passes behind a long 
wall. This time, however, the wall has a large gap in it. The scene 
is staged, because at a certain time where the sheep, unimpeded, 
might have expected to come out from behind the right wall, a 
second sheep, initially hidden, appears there. A single sheep 
would have been observed to pass through the gap. Since it did 
not, the intelligent observer is forced to conclude that there are, in 
fact, two separate sheep. Happily, Duncan makes the same 
determination, since his constant viewing of the space between the 
two walls keeps any of the probability from diffusing from behind 
one wall to behind the other. Thus when the second sheep 
appears, it appears in a location for which the first sheep�s 
location-distribution is zero. Since it is impossible for the two 
observations to represent the same object, the belief-matching step 
fails and a new persistent belief is added to Working Memory. 

This is apparent, because when Duncan is subsequently asked to 
approach the nearest sheep, he looks behind the left wall first. 
This is an exciting result for two reasons. First, it shows a very 
different kind of �reasoning� from the previous examples � a kind 
of negative reasoning, reflecting the ultimate determination that 
the two objects are not the same. Second, it shows a kind of 
reasoning that is highly distributed: the vision system provides 
observation data, the Verification System extracts visible 
locations, the Spatial System maintains the POM itself, and the 
Working Memory system makes the ultimate decision to allocate a 
new persistent belief. In the best sprit of the Society of Mind [9], 
it is the confluent effect of all these systems that results in the 
�intelligent� behavior. 

5.4 Emotional Behavior 
Duncan maintains a list of variables to represent various aspects 
of internal state. Some of these variables are explicit �emotional� 
variables. In one series of experiments, Duncan was given the 
variables of �surprise�, �confusion� and �frustration�. The first 
two of these were simply the outputs of equations (1.8) and (1.9) 
run through an asymmetric low-pass filter (for sharp rising edges 
and soft falling ones). The �frustration� variable grew by some 
factor on every timestep that Duncan�s target was not directly 
observed. Figure 8 shows a stereotypical trace of these variable 
values over time in a �search for the sheep� task. 
Currently, the only effect that these variables have is to change 
Duncan�s facial expression. However, the ultimate hope would be 
to feed these emotional variables back into Duncan�s basic 
decision-making processes, such that, for example, frustration 
could act as a signal to �stop whatever you�re doing and try 
something else�, and surprise could indicate �examine more 
carefully your object of attention� etc. 

 
Figure 6: The search task environment 

 
Figure 7: The object-matching task environment 



Beyond being interesting from a procedural animation point of 
view, we consider these types of emotions to be an important part 
of intelligent, expressive behavior. Emotions like confusion and 
frustration can prove convenient indicators of overall system state 
or recent history, and are, moreover, easily interpreted even by 
naïve observers. 

6. CONCLUSIONS 
In this paper, we have presented a model of object persistence and 
a representation � the Probabilistic Occupancy Map � that 
implements it. We draw a number of major conclusions. 
Architecturally, the POM is an important lesson in multi-layer 
decision-making. The section on emergent search shows that even 
with a simple explicit behavior-selection layer, many complicated 
behaviors can result with the right perception/space-modeling 
mechanisms. The behavioral level could be completely user-
directed, or scripted, or could be run by a complex automatic 
behavior simulation system. Whatever the case, there is clear 
benefit to separating out this series of spatial competencies into 
separate layers. 
Another important point is that a good representation is worth a 
lot. In this case, the POM structure was tuneable enough to be 
useful, but also general enough to account for many interesting 
effects. For example, it was fairly simple to incorporate a sense of 
momentum for velocity-based probability diffusion. It was also 
general enough that unforeseen behaviors emerged without being 
designed for. 
Most importantly, this work is an illustration of the expectation 
theory that is presented in section 2. It should show that (a) 
representations based on this theory are conceptually simple and 
easy to implement, (b) the representations are powerful, and lead 
to interesting behaviors and abilities and (c) these new abilities 
contribute substantially to a creature�s believability and apparent 
common sense. It is hoped ultimately that this work can serve as a 
model for how other kinds of expectation formation abilities 
might be incorporated into a behavior simulation framework. 
Much work yet remains to be done. Among the chief problems of 
the current system is the problem of scalability. The environments 
used for the experiments outlined here were all fairly simple and 
fairly limited in size. As the number of target objects and the size 
of the world increases, it will become increasingly difficult to run 
the algorithms described here at interactive rates. A possible 
solution to this might be to use some form of hierarchical space-
representation, which would allow the simulation to run 
accurately in locations near the creature, and coarsely in others. 
An indoor environment consisting of rooms connected by doors 
would certainly benefit from this type of representation. 

7. RELATED WORKS 
The field of artificial life is relatively new, but already has such 
seminal works as [1] and [15]. More recently, work by 
Terzopoulos and his colleagues (e.g. [5] and [18] and) has proved 
very impressive, and relevant to the current work for their concern 
with higher-level cognitive processes and cognitive modeling. 
There has been work on expectation theory. [12] points out a 
source of surprise not treated in this work: events for which there 
were no expectations but that are inherently unusual. The example 
given by the author is that of a brick flying through a window: no 

prior expectation existed over where or when such an event would 
occur, but it should nonetheless register a surprise. We believe 
that such models of inherent salience could easily be incorporated 
into our framework. As already mentioned before, [8] was very 
influential to this work. 
Drescher did work specifically on cognitive processes leading to 
object persistence [3] though only in a toy world. His work was 
itself an exploration of the computational side of Piaget�s theories 
(as in [13]). 
Probabilistic Occupancy Maps are clear derivatives of the 
Occupancy Grids, or Evidence Grids used in the mobile robotics 
literature (e.g. [10]). The major difference is that the �probability� 
held by each spatial element in Occupancy Grids refers to the 
probability of that element being occupied, rather than the 
probability that it should contain any particular object. Occupancy 
Grids are not position-distributions over space, rather they are a 
method for sensor-fusion over space. 
More generally, there has been a tremendous amount of work 
done on the modeling of emotions, such as [11], [14], and [19] to 
name but a few. Recent work on modeling emotional social agents 
has come out of the Synthetic Characters group itself, with [17]. 
In terms of emotion modeling, the current work seeks to go 
beyond the simple happiness/sadness models of emotion (e.g. [4]) 
to secondary emotions such as confusion or surprise that express 
more subtle aspects of a character�s internal state. 
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