
AI POSITIONING AND SPATIAL
EVALUATION: A PRIMER
Damián Isla, Co-Founder, The Molasses Flood

Ȱ3ÐÁÔÉÁÌ !×ÁÒÅÎÅÓÓȱ
(A Theme, not a technique, or technology, or algorithm)

S
p
a
tia

l A
b
ili
tie

s
in

 H
a
lo

 2

Á Static Pathfinding
Ğ Navigation mesh (ground)
Ğ Waypoint network (airborne)
Ğ Raw pathfinding
Ğ Path-smoothing
Ğ Hint integration (jumping, hoisting, climbing)
Ğ Static scenery-based hints
Ğ Static scenery carved out of environment mesh

Á Static feature extraction
Ğ Ledges and wall-bases
Ğ Thresholds
Ğ Corners
Ğ Local environment classification

Á Object features
Ğ Inherent properties (size, mass)
Ğ Oriented spatial features
Ğ Object behaviors (mount-to-uncover, destroy

cover)

Á Dynamic Pathfinding
Ğ Perturbation of path by dynamic obstacles
Ğ Ȱ-ÅÔÁ-ÓÅÁÒÃÈȱ Ⱦ 4ÈÒÅÓÈÏÌÄÓ Ⱦ %ÒÒÏÒ ÓÔÁÇÅÓ
Ğ Obstacle-traversal behaviors

À Vaulting, hoisting, leaping, mounting,
smashing, destroying

Á Path-following
Ğ Steering on foot (with exotic movement modes)
Ğ Steering a vehicle (e.g. ghost, warthog, banshee)

Á Interaction with behavior
Ğ What does behavior need to know about the way

its requests are being implemented?
Ğ How can pathfinding impact behavior?

Á Body configuration
Ğ Flying, landing, perching
Ğ Cornering, bunkering, peeking

Á Spatial analysis
Ğ Firing position selection
Ğ Destination evaluation based on line-of-sight,

range-to-target, etc.

Á Ȱ,ÏÃÁÌ ÓÐÁÔÉÁÌ ÂÅÈÁÖÉÏÒÓȱ
Ğ Line-tracing (e.g. for diving off cliffs)
Ğ Not facing into walls
Ğ Crouch in front of each other
Ğ $ÏÎȭÔ ×ÁÌË ÉÎÔÏ ÔÈÅ ÐÌÁÙÅÒȭÓ ÌÉÎÅ ÏÆ ÆÉÒÅ
Ğ Curing isolation
Ğ Detecting blocked shots

Á Reference frames
Ğ The viral nature of the reference frame

Á Cognitive model / Object persistence
Ğ Honest perception
Ğ Simple partial awareness model

Á Search
Ğ Simple by design
Ğ Group search

Á Spatial conceptualization
Ğ DESIGNER-PROVIDED
Ğ Zones, Areas (areas), Firing positions (locations)

The Most Fundamental of Questions

Where do I stand right now?

Á Depends on a huge amount of context.
Ğ Internal: goals, intentions, behaviors, etc.
Ğ External: target position, actions, obstacles, etc.

Á Extremely player-facing / gameplay relevant

Á Should be in the hands of the designers.

Position Selection

1. Gather potential positions

2. Score each position with F(x)

3. Choose the best one

4. Go there

Representation

Point cloud (Halo 2) +
Navigation Mesh

Navigation Graph (Killzone)
(Image from +ÉÌÌÚÏÎÅȭÓ AI: Dynamic Procedural Combat Tactics, by

R. Straatman, W. Van Der Sterren, A. Beij, GDC 2005)

Representation

Regular Grid (Third Eye Crime)

Representation

Regular Grid (Third Eye Crime)

Gather Step

Some approaches:

ÁPoints defined and assigned by designers
ĞHalo

ÁSpatial query (points within radius or box)

Á$ÉÊËÓÔÒÁȭÓ algorithm to find accessible positions
ĞThird Eye Crime

$ÉÊËÓÔÒÁƦÓ Algorithm

Find
ÁAccessible points

ÁPath distances

ÁReconstruct paths

0.0

$ÉÊËÓÔÒÁƦÓ Algorithm

Find
ÁAccessible points

ÁPath distances

ÁReconstruct paths

0.0

0.8

1.1

1.2

1.1

2.2

$ÉÊËÓÔÒÁƦÓ Algorithm

0.0

0.8

1.1

1.2

2.1

1.1

1.6

2.2

2.0

2.3

1.9

Find
ÁAccessible points

ÁPath distances

ÁReconstruct paths

$ÉÊËÓÔÒÁƦÓ Algorithm

0.0

0.8

1.1

1.2

2.1

1.1

1.6

2.2

2.0

2.3

1.9

Note:
Difference between
reps w/ Connectivity
info and those without.

Without:

Á Point clouds

With:

Á Navmesh verts

Á Regular grids

Position Scoring

F(x)

(An ȰApples-to-/ÒÁÎÇÅÓȱ problem)

Range(x)

Line of sight(x) Threat(x)

Distance(x)

42

Ȱ3ÐÁÔÉÁÌ &ÕÎÃÔÉÏÎȱ

Spatial Function

Input Types Include:

ÁRange(x) = range from x to target

ÁPath_distance(x) = path distance from NPC to x

Á LOS(x) = line of sight from x to target
 (1.0 = 100% clear)

ÁD(x) = distance of x to any occupied space

Á etc.

RE-use $ÉÊËÓÔÒÁȭÓ from
gather phase

Spatial Function Inputs

range LOS

Spatial Function

ÁSimplest form

 F(x) = k1A(x) + k2B(x) + k3C(x) + ...

ÁWith remapping:

 F(x) = f1(A(x)) + f2(B(x)) + f3(C(x)) + ...

Remapping

ȰÆÌÅÅȱ

ȰÃÈÁÒÇÅȱ

ȰÍÁÉÎÔÁÉÎ ÄÉÓÔÁÎÃÅȱ

Remapping

ȰÆÉÎÄȱ ȰÃÏÖÅÒȱ

x

Spatial Function

ÁSimplest form
 F(x) = k1A(x) + k2B(x) + k3C(x) + ...
ÁWith remapping:
 F(x) = f1(A) + f2(B) + f3(C) + ...
Á Ideally, use a flexible syntax:

 F(x) = k(f1(A) - f2(B)) / (f3(C)*f4(C)) ...
ÁOur own idiosyncratic form:
 F(x) = (((f1(A) + f2(B)) + f3(C)) * f4(D)) + f5(E) ...

Ȱ,ÁÙÅÒȱ

Implementation

Layers

Á Input source
Ğ range
Ğ los
Ğ path-distance
Ğ etc.

Á Combination method
Ğ Additive
Ğ Multiplicative

Á Remapping Function
Ğ output = F(input)

Á Global modifications
Ğ Blur factor
Ğ Normalization

Data

Code

DEMO

path_distance(x) range(x)

+ BLUR()

x
D(x)

x

LOS(x)

Position Selection + Pathfinding

The criteria for choosing points is not the same as
the criteria for getting there

ɉÅȢÇȢ ȰÃÈÏÏÓÅ Á ÓÐÏÔ ×ÉÔÈ ÃÌÅÁÒ ,/3 ÂÕÔ ÔÒÙ ÁÎÄ ÓÔÁÙ ÃÏÖÅÒÅÄ
×ÈÉÌÅ ÙÏÕ ÔÒÁÖÅÌ ÔÈÅÒÅȱɊ

Observation #1

Input functions are expensive

ĞLOS, path-distance, obstacle-distance, etc.

BUT remapping / combining/sharing is relatively cheap

3Ï ÏÎÃÅ ×ÅȭÖÅ ÃÏÍÐÕÔÅÄ ÔÈÅ ÉÎÐÕÔ ÌÁÙÅÒÓȟ ×Å ÃÁÎ ÌÉËÅÌÙ
afford to run multiple spatial functions

Observation #2

For Spatial Reps w/ Connectivity:

SINCE we probably have expensive spatial input already
computed on grid cells / navgraph vertices

And SINCE Dijkstra/A* can accommodate penalty functions

We can use a SEPARATE spatial function to specify a Dijkstra/A*
penalty function
Ğ specify both where to go, and how to get there

DEMO 2

However...

All paths were built into the gather-phase Dijkstra

Demo Solution: Use Dijkstra for gather but NOT for final path
creation
Ğ Once position selected, run A* from scratch to that destination using

penalty function
Ğ Expensive...

... And still wrong!

Á The path-distance input was provided by Dijkstra.

Á Not accurate if penalty function is distorting path

Where to Stand vs. How to Get There

Flame in the Flood Solution

Pass 1: Run penalty function
ĞGather phase via axis-aligned bounding box (AABB)

Pass 2: Run position scoring function
ĞGather via Dijkstra
ĞPass 1 provides Dijkstra penalty

All Behavior is Spatial

Spatial functions can be used for more than just position
evaluation

ÁA* penalty

Á path speed
Á aim on/off

Á target bias

Áweapon choice
Á ...

Knife

Pistol

Rifle

